Synthesis and evaluation of phosphopeptides containing iminodiacetate groups as binding ligands of the Src SH2 domain.

نویسندگان

  • Guofeng Ye
  • Aaron D Schuler
  • Yousef Ahmadibeni
  • Joel R Morgan
  • Absar Faruqui
  • Kezhen Huang
  • Gongqin Sun
  • John A Zebala
  • Keykavous Parang
چکیده

Phosphopeptide pTyr-Glu-Glu-Ile (pYEEI) has been introduced as an optimal Src SH2 domain ligand. Peptides, Ac-K(IDA)pYEEIEK(IDA) (1), Ac-KpYEEIEK (2), Ac-K(IDA)pYEEIEK (3), and Ac-KpYEEIEK(IDA) (4), containing 0-2 iminodiacetate (IDA) groups at the N- and C-terminal lysine residues were synthesized and evaluated as the Src SH2 domain binding ligands. Fluorescence polarization assays showed that peptide 1 had a higher binding affinity (K(d) = 0.6 microM) to the Src SH2 domain when compared with Ac-pYEEI (K(d) = 1.7 microM), an optimal Src SH2 domain ligand, and peptides 2-4 (K(d) = 2.9-52.7 microM). The binding affinity of peptide 1 to the SH2 domain was reduced by more than 2-fold (K(d) = 1.6 microM) upon addition of Ni(2+) (300 microM), possibly due to modest structural effect of Ni(2+) on the protein as shown by circular dichroism experimental results. The binding affinity of 1 was restored in the presence of EDTA (300 microM) (K(d) = 0.79 microM). These studies suggest that peptides containing IDA groups may be used for designing novel SH2 domain binding ligands.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SH2 domains exhibit high-affinity binding to tyrosine-phosphorylated peptides yet also exhibit rapid dissociation and exchange.

src homology 2 (SH2) domains of intracellular signaling molecules such as phospholipase C-gamma and phosphatidylinositol 3'-kinase-associated protein p85 represent recognition motifs for specific phosphotyrosine-containing regions on activated growth factor receptors. The binding of SH2 domains to activated growth factor receptors controls the interaction with signaling molecules and the regula...

متن کامل

Conformational Determinants of Phosphotyrosine Peptides Complexed with the Src SH2 Domain

The inhibition of specific SH2 domain mediated protein-protein interactions as an effective chemotherapeutic approach in the treatment of diseases remains a challenge. That different conformations of peptide-ligands are preferred by different SH2 domains is an underappreciated observation from the structural analysis of phosphotyrosine peptide binding to SH2 domains that may aid in future drug ...

متن کامل

Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal.

Src homology 2 (SH2) domain-mediated interactions with phosphotyrosine residues are critical in many intracellular signal transduction pathways. Attempts to understand the determinants of specificity and selectivity of these interactions have prompted many binding studies that have used several techniques. Some discrepancies, in both the absolute and relative values of the dissociation constant...

متن کامل

High-throughput phosphotyrosine profiling using SH2 domains.

Protein tyrosine phosphorylation controls many aspects of signaling in multicellular organisms. One of the major consequences of tyrosine phosphorylation is the creation of binding sites for proteins containing Src homology 2 (SH2) domains. To profile the global tyrosine phosphorylation state of the cell, we have developed proteomic binding assays encompassing nearly the full complement of huma...

متن کامل

Defining the specificity space of the human SRC homology 2 domain.

Src homology 2 (SH2) domains are the largest family of interaction modules encoded by the human genome to recognize tyrosine-phosphorylated sequences and thereby play pivotal roles in transducing and controlling cellular signals emanating from protein-tyrosine kinases. Different SH2 domains select for distinct phosphopeptides, and the function of a given SH2 domain is often dictated by the spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioorganic chemistry

دوره 37 4  شماره 

صفحات  -

تاریخ انتشار 2009